Lojistik Sektöründe Yapay Zeka: Verimlilik, Otomasyon ve Günümüz Trendleri
Lojistik Sektöründe Yapay Zeka: Verimlilik, Otomasyon ve Günümüz Trendleri
DOI:
https://doi.org/10.62844/jerf.23Anahtar Kelimeler:
Yapay zeka, Lojistik, Otomasyon, Verimlilik, Büyük veriÖzet
Bu çalışma, yapay zekanın (YZ) lojistik sektöründeki etkilerini çok boyutlu bir şekilde incelemektedir. Rota optimizasyonu, otomatikleştirilmiş depo yönetimi, talep tahmini ve kaynak planlaması gibi uygulamalar üzerinden YZ’nin operasyonel verimlilik, maliyet avantajı ve sürdürülebilirlik açısından sağladığı katkılar ortaya konulmuştur. Ayrıca Huawei tarafından geliştirilen çeşitli ulusal ve uluslararası uygulama örnekleri üzerinden YZ’nin karayolu, demiryolu, havayolu ve şehir içi ulaşım sistemlerine entegrasyonu analiz edilmiştir. Çalışma, YZ teknolojilerinin lojistikte dijitalleşmeyi desteklediğini ve stratejik karar alma süreçlerinde önemli avantajlar sunduğunu göstermektedir. Bununla birlikte veri güvenliği, teknik altyapı yetersizlikleri ve yetkin insan kaynağı eksikliği gibi bazı zorluklar, bu teknolojilerin etkin kullanımını sınırlamaktadır. Sonuç olarak, yapay zekanın lojistik sektöründeki potansiyelini tam anlamıyla gerçekleştirmesi için kapsamlı ve bütünleşik bir stratejik yaklaşım gerekmektedir.
Referanslar
Alkinani, M. H., Almazroi, A. A., Adhikari, M., & Menon, V. G. (2022). Artificial intelligence-empowered logistic traffic management system using empirical intelligent XGBoost technique in vehicular edge networks. IEEE Transactions on Intelligent Transportation Systems, 24(4), 4499-4508.
Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2018). Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476
Blecken, A. (2010), "Supply chain process modelling for humanitarian organizations", International Journal of Physical Distribution & Logistics Management, Vol. 40 No. 8/9, pp. 675-692. https://doi.org/10.1108/09600031011079328
Chottani, A., Hastings, G., Murnane, J., & Neuhaus, F. (2018). McKinsey. https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/distraction-or-disruption-autonomous-trucks-gain-ground-in-us-logistics#/
Dey, A., LaGuardia, P. and Srinivasan, M. (2011), "Building sustainability in logistics operations: a research agenda", Management Research Review, Vol. 34 No. 11, pp. 1237-1259. https://doi.org/10.1108/01409171111178774
DHL. (2023). Freight Connections. https://dhl-freight-connections.com/en/trends/logistics-trends-2023-2024/
Dong, K., Romanov, I., Mclellan, C., & Esen, A. F. (2022). Recent text-based research and applications in railways: A critical review and future trends. Engineering Applications of Artificial Intelligence, 116, 105435. https://doi.org/10.1016/j.engappai.2022.105435
Hangl, J., Behrens, V. J., & Krause, S. (2022). Barriers, drivers, and social considerations for AI adoption in supply chain management: a tertiary study. Logistics, 6(3), 63.
Hompel, M., & Schmidt, T. (2006). Warehouse management: automation and organisation of warehouse and order picking systems. Springer Science & Business Media.
HUAWEI. (2024). Amplifying Industrial Digitalization & Intelligence Practice White Paper. Huawei Technologies Co. Ltd.
Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775–788. https://doi.org/10.1080/09537287.2020.1768450
Jebbor I, Benmamoun Z, Hachmi H. (2024). Revolutionizing cleaner production: The role of artificial intelligence in enhancing sustainability across industries. Journal of Infrastructure, Policy and Development. 8(10): 7455. https://doi.org/10.24294/jipd.v8i10.7455
Jindal, A., Sharma, S. K., Sangwan, K. S., & Gupta, G. (2021). Modelling supply chain agility antecedents using fuzzy DEMATEL. Procedia CIRP, 98, 436-441. https://doi.org/10.1016/j.procir.2021.01.130
Kumar, V., Mishra, N., Chan, F. T. S., & Verma, A. (2011). Managing warehousing in an agile supply chain environment: an F-AIS algorithm based approach. International Journal of Production Research, 49(21), 6407–6426. https://doi.org/10.1080/00207543.2010.528057
Li, F. (2022). [Retracted] Logistics Distribution Path Optimization Algorithm Based on Intelligent Management System. Computational Intelligence and Neuroscience, 2022(1), https://doi.org/10.1155/2022/3699990.
Li, X., Ng, X. Y. C., Zhou, Y., & Yuen, K. F. (2021). A ranking of critical competencies for shore-based maritime logistics executives in the digital era. Technology Analysis & Strategic Management, 35(7), 919–934. https://doi.org/10.1080/09537325.2021.1988920
Minea, M., Dumitrescu, C. M., & Dima, M. (2021). Robotic Railway Multi-Sensing and Profiling Unit Based on Artificial Intelligence and Data Fusion. Sensors (Basel, Switzerland), 21(20), 6876. https://doi.org/10.3390/s21206876
Mohsen, B. (2023) Impact of Artificial Intelligence on Supply Chain Management Performance. Journal of Service Science and Management, 16, 44-58. https://doi.org/10.4236/jssm.2023.161004
Morales, V. E., Sanchez, J., Escalera, J., Sharma, V., & Wheeler, B. (2024). Artificial intelligence & aviation: Content analysis of research publications from 2013-2023. https://doi.org/10.62704/10057/28469
Pandey (2023). Digital Transformation In Supply Chain Management: Role of IoT. International Journal of Advanced Research in Management and Social Sciences. 12(12), 55-62.
Pandian, A. P. (2019). Artificial intelligence application in smart warehousing environment for automated logistics. Journal of Artificial Intelligence, 1(02), 63-72. https://doi.org/10.36548/jaicn.2019.2.002
Phusakulkajorn, W., Núñez, A., Wang, H., Jamshidi, A., Zoeteman, A., Ripke, B., ... & Li, Z. (2023). Artificial intelligence in railway infrastructure: Current research, challenges, and future opportunities. Intelligent Transportation Infrastructure, 2, liad016. https://doi.org/10.1093/iti/liad016
Pilon, R. V. (2023). Artificial Intelligence in Commercial Aviation: Use cases and emerging strategies. Routledge.
Richey Jr, R. G., Chowdhury, S., Davis‐Sramek, B., Giannakis, M., & Dwivedi, Y. K. (2023). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. Journal of Business Logistics, 44(4), 532-549. https://doi.org/10.1111/jbl.12364
Rosendorff, A., Hodes, A., & Fabian, B. (2021). Artificial Intelligence for last-mile logistics-Procedures and architecture. The Online Journal of Applied Knowledge Management (OJAKM), 9(1), 46-61.
Sadou, A. M., & Njoya, E. T. (2023). Applications of artificial intelligence in the air transport industry: a bibliometric and systematic literature review. Journal of Aerospace Technology and Management, 15. https://doi.org/10.1590/jatm.v15.1312
Tang, R., De Donato, L., Besinović, N., Flammini, F., Goverde, R. M., Lin, Z., ... & Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems. Transportation Research Part C: Emerging Technologies, 140. https://doi.org/10.1016/j.trc.2022.103679
Tsidulko, J. (2024). Oracle. https://www.oracle.com/scm/ai-supply-chain/#challenges
Tsolakis, N., Niedenzu, D., Simonetto, M., Dora, M., & Kumar, M. (2021). Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry. Journal of Business Research, 131, 495-519. https://doi.org/10.1016/j.jbusres.2020.08.003
Wang, Y., Yao, Y., & Li, Y. (2022). The Impact of Artificial Intelligence Development on the Logistics Industry Talent Demand and Countermeasures. In DMI (pp. 349-359). https://doi:10.3233/FAIA230035
Zhang, H., Hu, R., Chen, A., Lei, Y., & Qu, H. (2024, June). Enhancing Concrete Supply Chain Efficiency in Civil Engineering through Digital Transformation: A Comprehensive Review. In 2024 8th International Conference on Civil Architecture and Structural Engineering (ICCASE 2024) (pp. 741-753). Atlantis Press. https://doi.org/10.2991/978-94-6463-449-5_73
Zhang, J., & Zhang, J. (2023). Artificial intelligence applied on traffic planning and management for rail transport: a review and perspective. Discrete Dynamics in Nature and Society, 2023(1). https://doi.org/10.1155/2023/1832501
Zhu, X., Liu, N., & Shi, Y. (2022). Artificial intelligence technology in modern logistics system. International Journal of Technology, Policy and Management, 22(1-2), 66-81. https://doi.org/10.1504/IJTPM.2022.122537
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 Can Burak Nalbantoğlu

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.
